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Longitudinal osciallations of a one-dimensional system which can be represent- 
ed by a rod interacting with various kinds of inertial mobile media, are consid- 
ered. It is assumed that the media do not react with each other, can only move 
along the rod and, that there is no internal interaction between the elements 
of the media. The model can be used to study the oscillations of sufficiently 
long chains of rigid bodies to which other mobile bodies are attached by means 
of deformable elements, oscillations of one-dimensional systems of rigid bod- 
ies with cavities partially filled with fluid, etc. A transitional mode of mot- 

ion in similar systems was studied in [l]. 

1 Let us consider a rod of length Ir colliding at initial velocity v,, with an 
identical stationary rod of length I, . The collision produces a new rod of length 

1 = I, f I,. The motion of such a system is described by the following differential 
equations with initial and boundary conditions: 

(1.1) 

p,ja211~j I at2 + Pj = pzja2u / at2, j = 1,2, . . . . n 

au (0, 1) / ax = au (I, t) / a2 = 0, u kc, 0) = wj (r, 0) = 0 (1.2) 

awj (5, 0) / at = 0, i = 1,2, . . ., n, alt tx, 0) / at = 2;. (1 - o. (X - tj)l 

Here p1 is the density of the rod, p2j is the density of the j -th medium; u (I, t) 
denote the longitudinal displacements at the instant t of the cross section of the rod 
at the distance 2 from one of its free ends (the other free end has the coordinate r = 

I); wj (I, t) is the displacement of the i -th medium relative to the rod; S is 
the longitudinal force acting at the cross section of the rod: Pj is the intensity of the 
force of interaction of the rod with the i -th medium and o. (5 - 21) denotes the 

unit Heaviside function. 
Let us write Eq. (1.1) in the form 
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Here Gj (t - ^E) is the Green’s function defining the forces of interaction with the 
media. Seeking the solution of (1.3) in the form II (r, t) = X (2) 2’ (t) s we obtain 

X” + (h / z)~X = 0, pJ, [T”] -I- (A / z)2 S [T] = 0 
(1.4) 

Here S is an operator {see below), h is an eigenvalue which, under the conditions 

(1.2) is equal to 0, x, 2n, . . . , in, . . . , and Xi (CC) = cos (hs / 2) are the corres- 
ponding eigenfunctions. 

We shall seek the solution in the form 

a3 

c 

(1.5) 
u (XT q = XIY?” (1) + xi (I) 4i (t) 

i=l 

Here qol a l ev qrr . . St Cpoj, a e ., ‘Pij denote the generalized coordinates [2] given by 
the differential eqj.zations 

a,,iqi** + jj aoji’Pij** + ZIiS [qi] = 0 (1. 6) 

j=l 
i .., iLoqi T Gj; ‘pij” + JZiPj frpiJ = 0, i = 0,1,2, . . . ; i = 1,2, * . * , n 

(_ 
%I 

3 = pzzi, ajo' = LZoj - - rzjaOOz, % 
’ = rz,400’ 

1 

where S and Pj are operators the structure of which determines the dependence of 
the magnitudes of the forces S and Pi on the deformation au / 3% and displacem- 

ents Wj (5, t). 

In accordance with (1.2) we obtain, for (1.61, 
15 

q, (0) = cpij (Of= 0, qi- (0) = %% * 
(1.7) 

cpij(0) = 0, !L$$ = 
s 

X@ 
0 

Applying the Laplace transformation to (1.6) with conditions (1.7), we obtain the foll- 

owing system of algebraic equations: 

%otP2!7i (PI 4 $ ‘Oj’P%~j (PI i ‘Iis IPI Qi (Pf II= @D, (1.8) 
j=l 

ajoiP2Qi (PI + ‘jjiP29ij (PI + ‘?iPj [PI ‘Pij (PI =- ‘23@i 

i = 0,1,2, . . ; j = 1,2, . . ., n 

where p is a complex variable, pi (p), cpij (p), s [p], Pj [p] are the transforms of 
the variables and Qi = p v~z~~. 
Solutions of (1.8) are given by the expressions 

Qi (p) = Din (p) / Di (P),‘pij (P) = Dij(p (P) i Di (PI (1.9) 
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Di = (Ti - i; aojip21:ji} h Qj' 
j=l j=l 

Dip = Qi (1 + i rzjRji} fi Qji 
j=1 j=l 

Dij'L-Oi{r2j[Ti- i ’ a&” (1 - b,j) @k] + 
=l 

aojip2 [ 1 + i; rzlr (I - h,J R$]} fi (Qkp 
k=l k=1 

Qji = ajjip2 + zziPj [p], Rii = a”$” (Q;)-1, Ti = a,,,ip2 f zIiS [p] 

where 6kj is the Kronecker delta. 
The transforms of the functions describing the variation of the forces S with time 

and of the accelerations aj of the media with indices j = 1,2, . . , n, have the form 

(1.10) 

aj = ("2jP)-' f$ Ayi t2) “j [PI 'Fij (PI 
i=O 

From (1.9) and (1.10) we obtain the following expresssions for the case in which the 
equations Di (p) = 0 have complex roots (hij and oil denote the real and imaginary 
parts of the pair of roots with index i) : 

m n+1 
1 

s (4, t) = - r” 
z 

f (i) sin in& sin inc 
c 

Vi j ) &- (1. 11) 

i=l j=l 

m n+1 

nj (4, f) = - 7TQ 
c 

if (i) sin ix& c0s in: 
c 

wij, E” = + 

i=l j&l 

Vij = ..lij cxp (- hijt) cos (Oijt _1- Yij), TYij = Bij exp (-- ILijt) COS (~ijt + &ij) 

For each pair of real roots of a single equation, the functions Vij and ~4‘~~ are 
obtained in the form 

~ij ‘~ .,lij eX1) (- kijt) f Yij eXp (- o,ijt) ( 1.12) 

T’t’ij = Bij eXp (- ILijt) + Eij eXp (- ~ijf) 

The quantities Aij, Bij, vij and sij in (1.11) and (1.12) are functions of the initial 
parameters of the system, of the eigenvalues hi and of the corresponding values of 
hii and oii , and f (i) is the convergence multiplier used for smoothing the spikes 

caused by the Gibbs phenomenon. 
Thus the solution (1.11) represents a sum of packets of particular solutions with 

the same distribution of amplitudes along the length of the system. The packet con- 

tains n + 1 components where )I is the number of mobile media with which the rod 
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interacts. 

2. Let us consider the longitudinal forces S and accelerations aj for the simplest 
case of n = 1 . This case corresponds, e. g. , to the longitudinal oscillations of a 
train of carriages with mobile amortized loads or of a train of cisterns, if the motion 
of the liquid within them is represented by a discrete mechanical analog and the high- 
er oscillation frequencies of the liquid in the cisterns, which have little effect on the 
motion of the system, are neglected [4]. 

Let us adopt S = k (1 -I- 1~8 / dt), and I’, = !Q (1 + p1 (3 I dl). We shall assume 
that the coefficients p and p, are constants of viscoelastic systems and for the 
elastic systems with hysteresis [Z] we have p = pj = t” / Yil, p1 == p,i = [L1’ / yip 

(l’il and vi2 are the eigenfrequencies of a conservative system, and I-I’ , pI’ are dim- 
ensionless coefficients characterizing the dissipation of energy when the phase angle 
is changed by one radian). 

In the case of n = 1 for p = pI = u , the equations ui (p) == 0 correspond to 
the natural oscillations of conservative systems with two degrees of freedom. Consequ- 
ently, for each eigenvalue i\i of the system, we have a corresponding packet oftwo 
characteristic oscillations with the same distribution of amplitudes. On increasing the 
values of hi , the frequencies of these oscillations tend asymptotically to the values 

vii* = hi [k / p (1 - T~~)]~‘* / L of the frequencies of oscillation of a rod of length I, 

and to the value Q* = [k, / p rzl] lia of the partial oscillation frequency of the medium 

with respect to the fixed rod. 

As an example, we determine the forces and accelerations appearing when two 
equal trains, each containing 10 railway carriages, each carriage of 13.9m length, 

collide at the velocity of 1 m/s , in the case when there are no gaps in the inter- 

carriage links. We assume that p = 6.1 ton,;, k = 320mN and rzl = 0.5. The value 

of k, varies within the range defined by the r)elation 0.005 < CL ,< 1 where a = 
13.92kI / k . 

Fig. 1 

Figure 1 depicts the change in the value of the 
coefficients Aj, (curves I, I’, 3) and Ai (curves 

I’, ,Y, 3’) with i , in the relations (1. 11) when IL 
_ P1 = 0. The curves 1 and 1’ correspond to cc 
= 1, 2 and 2’to CY = 0.1, and 3 , 3’ to CL = 0.01. 

Curve 0 depicts the variation in the value of the 
coefficients Ai in the case of a solid rod (~1 ~0). 

from Fig. 1 we see that 

‘Q + Ai, d Ai (2. 1) 

in all cases. The coefficients Ai, tend with increas- 
ing i to the corresponding values of A i . The uni- 
form convergence of the series (1. 11) with the smooth- 
ing multipliers [3] when rzl = 0 , and the condit- 
ion (2. l), together imply that when ~ZI i 0 [S], 
then the series (1. 11) converge to uniform, almost 
periodic functions. 

Figure 2 shows the variation of the forces with 

time at various cross sections of one of the colliding systems. Curves I correspond to 
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E = 0.5 (at the site of contact of the colliding systems) and the values of 112 and 
i/4 denote the lines constructed for E = t/4 and 118 , respectively. Thick solid 

lines correspond to p = pL1 = 0. Thin solid lines correspond to the case of a viscoelase 
ic system, and the broken lines to an elastic system with hysteresis (in the latter case 
p’ = ur’ = 0.1). To make possible the comparison of the results obtained for the 
viscoelastic systems with those obtained for the elastic systems with hysteresis, the 
coefficients P and p1 were determined using the relations p = p‘ / Q*, p1 = pI’ 

J VL where vI1* is the frequency of the first harmonic of the partial oscillations 
of a load-free rod, and ~~2~ is the frequency of oscillations of the load relative to 
the stationary rod. Fig. 2a corresponds to the case rs1= 0 (oscillations of a solid rod 

Fig. 2 
b 

during the collision) and Fig. 2b corresponds to the case r2r = 0.5, a = 0.01. 
Analysing the above relations we find, that if a part of the mass of the one-dimension- 
al system can move with respect to the rod, while retaining the elastic or viscoelastic 
coupling with the rod, then although the duration of intense activity of the forces is 

reduced, the time during which the compression is predominant is increased and deter- 
mined by the time of propagation of the waves along the rod of density pr and ridig- 

ity k. 

Figure 3 shows the dependence of the maximum values of the forces and accelera - 

tions (in units of g ) on a . Curve 1 corresponds to a conservative system (p’ = pr’ 
= O), curve 2 to a viscoelastic and 

3 to the elastic system with hyst- 

eresis. From Fig, 3 it is apparent 
that the maximum forces occurring 
within the interval of values of a 

may exceed the force aris,ing in 
collisions of solid rods, by about 

1. 3 times. When the value of 

a is reduced from 1 to to-’ , 
the acceleration of the loads is al- 
so diminished. The points I’, 2’ 
and 3’ in Fig. 3 denote the large- 
st values of the forces during the 

Fig. 3 collisions of the systems with 
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cavities partially filled with fluid [4], In these cases +r = 0.41 and the point I’ 
corresponds to a conservative system, 2’ to a viscoelastic and 3’ to an elastic system 
with hysteresis. Analysis of the results deplicted in Fig. 2 and 3 shows that viscous 
dissipation of energy leads to increase in the values of the forces during the collision 
of solid rods, and to reduction when the colliding systems have mobile loads. The 
differences in the values of the forces and accelerations in the viscoelastic and elastic 
systems with hysteresis [l] are not essential. 
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